Mit über 90% der Fälle ist der Diabetes mellitus Typ II am häufigsten. Dieser ist stark mit Adipositas und Fettstoffwechselstörungen, aber auch mit einer genetischen Prädisposition assoziiert. Der Manifestation der Erkrankung geht der Prädiabetes voraus. Nach Zahlen der Klinik für Unfall- und Wiederherstellungschirurgie des Universitätsklinikums Tübingen wird bei nicht weniger als 40-50% der dortigen Patient:innen das Vorstadium des Diabetes diagnostiziert [2], was bis zu deren Hospitalisierung meist unentdeckt war. An Prädiabetes erkrankte Patient:innen haben bereits einen gestörten Blutzuckerstoffwechsel. Des Weiteren besteht, ebenso wie bei Diabetiker:innen, ein erhöhtes Risiko für Frakturen und Infektionen sowie Probleme bei der Heilung von Wunden und Frakturen. Dies führt zu längeren Krankenhausaufenthalten und einer erhöhten Sterblichkeitsrate nach Verletzungen.
Der positive Punkt ist, dass Prädiabetes insbesondere mittels Lifestyle-Veränderungen umkehrbar ist [3]. Dies unterstreicht die Notwendigkeit einer möglichst effektiven Früherkennung weiter.
Neue Möglichkeiten der Früherkennung durch KI
In Kooperation mit der Universität Tübingen, der Universität Mannheim und Famedly arbeitet medicalvalues an der Entwicklung eines KI-gestütztes System zur Früherkennung von (Prä-)Diabetes. So sollen Korrelationen und neue molekulare Biomarker identifiziert werden.
Unser hybrider Ansatz integriert modernes maschinelles Lernen, aber auch vorhandenes medizinisches Wissen, OMICS-Daten und aktuelle Studien. Dies ermöglicht eine bessere Ausgangsbasis für die Früherkennung von (Prä-)Diabetes, ohne die Notwendigkeit großer Datenmengen, was einen klaren Vorteil gegenüber bestehenden Ansätzen darstellt.
Ein Schlüsselmerkmal des Projekts ist der Knowledge-Graph als KI-Komponente. Er bildet Zusammenhänge und medizinische Algorithmen ab. Somit wird gleichzeitig das Einbeziehen von Daten aus verschiedenen Quellen ermöglicht, wie auch nachvollziehbare Schlussfolgerungen durch die Anschaulichkeit des Graphen. Besonders im medizinischen Bereich sind die Erklärbarkeit und die Nachvollziehbarkeit von durch KI bereitgestellten Informationen essentiell. Für eine reibungslose Funktionalität und Integration werden etablierte medizinische Standards wie FHIR, SNOMED, LOINC und RadLex verwendet.
Diese Ziele möchten wir erreichen
Die Implementierung und weitreichende Anwendung eines angemessenen Screenings zur frühzeitigen Erkennung und Charakterisierung/Risikobewertung von Patient:innen mit (Prä-)Diabetes-Risiken
Die Reduzierung der Komplikationsrate und verkürzte Krankenhausaufenthalte in der Akutversorgung von Patient:innen mit zuvor unerkanntem (Prä-)Diabetes durch eine gezielte Optimierung des Blutzuckerspiegels
Rechtzeitige Veränderungen im Lebensstil und eine Abmilderung des Verlaufs von (Prä-)Diabetes
Die Senkung der Konversionsrate von Prädiabetes zu Diabetes um 20%
Mit diesem innovativen Projekt möchten wir dazu beitragen, die Lebensqualität der Patient:innen nachhaltig zu verbessern und der Erkrankung frühzeitig vorzubeugen. Durch die Steigerung der Effizienz des Gesundheitssystems können wir die Auswirkungen von Diabetes auf die Gesellschaft minimieren und gleichzeitig das Gesundheitswesen entlasten.
Literaturverzeichnis:
[1]: International Diabetes Foundation Diabetes Atlas 10th edition 2021
[2]: Kufeldt, J., et al., Prevalence and Distribution of Diabetes Mellitus in a Maximum Care Hospital: Urgent Need for HbA1c-Screening. Exp Clin Endocrinol Diabetes, 2018
[3]: Phillip Tuso, Prediabetes and Lifestyle Modification: Time to Prevent a Preventable Disease, Perm J. , 2014